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Dirac Operator on the Podleś Sphere1
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The spectral problem for the Dirac operator on the Podleś sphere is discussed
and solved in one of its possible formulations. The standard constructions for
the Dirac operator on classical symmetric spaces and the spectrum of the Dirac
operator on the classical two-dimensional sphere are recalled. The problem of
defining a spinor structure on a quantum space is discussed and the definitions
of a classical spinor structure and Dirac operator according to –Durd-evich are
sketched. The Dirac operator for the Podleś quantum sphere treated as a quotient
space of SmU(2) is constructed using the Woronowicz left-covariant calculus over
this quantum group. The spectrum of the operator is obtained. Disagreement of
its asymptotic behavior with Connes’ axiom of noncommutative spectral geometry
is stressed.

1. INTRODUCTION

Spectra of the Dirac operator on compact symmetric spaces play an
important role in Kałuża–Klein theories (Appelquist et al., 1987) and in
condensed matter models (Makaruk, 1995, 1996). They are an alternative
for the metric structure on Riemannian spin manifolds. They carry information
about the topology of the spaces, as is shown in spectral noncommutative
geometry introduced by Connes (1994).

The internal space is responsible for interactions observed in space-time
and its size is usually assumed to be of the order of the Planck length, 10233 m.
The postulate that a space of this size has properties of a classical differential
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manifold is questionable. At such distances, it should be rather a kind of
quantum space, to which the concept of points is no longer applicable. Such
spaces are described in the framework of noncommutative geometry (Connes,
1994; Woronowicz, 1987; –Durd-evich, 1996). Spectra of the Dirac operator
on such spaces would give important information about the effective theory
in physical space-time. Additionally, such spectra would be very interesting
from the point of view of description of energy levels of the theories leading
to the algebraic treatment of the spectra for classical symmetric spaces.
For classical spheres, there exist a couple of interesting, yet quite different
approaches to derivation of the spectrum of the Dirac operator: In one of
them, the sphere is treated as a hypersurface in the ambient Euclidean space
(Trautman, 1992, 1995). This approach enables derivation of the spectrum
for a sphere of arbitrary dimension. Unfortunately, this approach seems not
to be extendible to the case of quantum spheres. On the other hand, the
approach treating spheres as symmetric spaces (Cahen and Gutt, 1988; Bär,
1992) looks much more plausible in the context of such generalization.

In Section 2, we recall, mainly following Cahen and Gutt (1988), how
the standard spin structure and the Dirac operator look when introduced on
classical symmetric spaces. We stress the algebraization of the operator and
its spectral problem for such spaces due to so-called Wigner symmetry of
such systems. We also review the form of the spectrum for the classical two-
dimensional sphere. In Section 3, we discuss the generalization of the notion
of spin structure and of the Dirac operator to the noncommutative context,
following –Durd-evich (1994), within the framework of classical spin structures,
which is one such generalization. We also mention other possibilities, which
we do not discuss in this paper. In this section, we also discuss possible
generalizations of the notion of a symmetric space to the noncommutative
context, pointing out difficulties with such notion, and finally limiting the
further discussion to quotient quantum spaces. In Section 4, we introduce
the Dirac operator and calculate its spectrum for the case of a quantum sphere
(Podleś, 1987), treated as a quantum quotient space of the SmU(2) quantum
group (Woronowicz, 1987), equipped with a classical spin structure, and with
the Dirac operator coming from the left-covariant differential calculus on
SmU(2) (Woronowicz, 1987). We stress disagreement of its asymptotic behav-
ior with Connes’ axiom concerning asymptotic of spectra of the Dirac operator
on noncommutative spaces.

2. DIRAC OPERATOR AND ITS SPECTRUM ON CLASSICAL
SYMMETRIC SPACES

The definition of a spin structure on a Riemannian oriented manifold
(M, g) is given in Owczarek (1999). Let us discuss the constructions of spin
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structures on Riemannian, compact, simply connected, symmetric spaces
represented as the quotient spaces M 5 G/K, where G is a compact and
simply connected Lie group and K 5 (Gs)o is the connected component of
the identity of the group of fixed points of s, with s an involutive automor-
phism of G. Let & be the Lie algebra of G, _ the Lie algebra of K, and 3 5
{x P &: s*e x 5 2x}, where e is the neutral element of G and s*e: & → &
is the automorphism of & derived from s. The vector space 3 is isomorphic
with the tangent space to M at o 5 p(e), where p: G → G/K is the canonical
projection. Moreover, ToM with the metric g.ToM is, up to a homothety, isomet-
ric with 3 equipped with the Killing form of & limited to 3. Cahen and
Gutt (1988) showed that the orthonormal frame bundle over M 5 G/K
can be identified with F(M ) 5 G 3a SO(m), where a: K → SO(m) is the
homomorphism derived from the natural left action of G on M and the
subscript a means that we consider equivalence classes defined by [g, A] 5
[gk, a(k21)A], where k P K, g P G, A P SO(m). The derivative of the latter
action at a point of M acts isometrically in the tangent space to M at this
point. Construction of spin structures on these spaces depends on the existence
of lifts of the homomorphisms a discussed above to homomorphisms a8: K
→ Spin(m), since one can easily prove (Cahen and Gutt, 1988; Bär, 1992)
that the mapping from the set of lifts a8 of a to the set of spin structures on
M is a 1–1 correspondence. As a result, the form of the spin structure on M
is F̃(M ) 5 G 3a8 Spin(m), where the subscript a8 plays an analogous role
to the subscript a above. With this principal Spin(m) bundle is associated,
through the standard representation rm: Spin(m) → End(Sm) of the spin group
Spin(m) in the spinor space Sm , the vector bundle of spinors, which can be
written as 6 5 G 3rma8 Sm. On the space of smooth sections of this bundle
(the space of smooth spinor fields), which can be understood as the tensor
product of the space of C-valued functions on the group G by Sm , with
appropriate identifications, one can define a natural scalar product using the
Haar measure on G and the natural scalar product in Sm. Let the completion
of the space of smooth sections of 6, C `(G, Sm)K , where the subscript K
means equivariance identification of elements of C `(G, Sm), in the norm
defined by this scalar product be denoted L2(G, Sm)K. The Dirac operator
can be extended from C `(G, Sm)K to a self-adjoint operator on L2(G, Sm)K.
As a consequence of the Peter–Weyl theorem, we have Frobenius reciprocity,

L2(G, Sm)K 5 %
gPĜ

Vg ^ Hom(Vg, Sm)K (1)

where Ĝ is the unitary dual of G and (Vg, rg) is a representative of the
equivalence class g. This theorem is very important for algebraization of the
Dirac operator on the symmetric spaces since D commutes with the left action
of G, induced from its natural action on a symmetric space, viewed as a
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homogeneous space of G. This property is strictly related to the fact that the
Dirac operator is constructed using the Levi-Civita connection, which is
expressed in terms of horizontal left-invariant vector fields on G, identifiable
with elements of &. Therefore, the Dirac operators on symmetric spaces
satisfy the requirements for systems with a Wigner symmetry (in this case
with the symmetry group G), as they are described, e.g., in Hurt and Hermann
(1980). For such systems, the spectral problem is reduced to the purely
algebraic problem connected with finite-dimensional unitary irreducible rep-
resentations of the symmetry group. Our constructions in the noncommutative
case will be also directed toward obtaining a system with Wigner symmetry,
this time of a quantum group instead of a classical one. Then the knowledge
of representations (unitary irreducible) of this quantum group is enough to
derive the desired spectrum (at least in principle, since the algebraic calcula-
tions still might be quite complicated in the general case). As a result of the
commutation of the operator D with the left SU(2) action, D stabilizes the
subspaces defined by the equality (1). The identification of elements of Vg

^ Hom(Vg, Sm)K with elements of C`(G, Sm)K by

(v ^ A)(g) 5 A(rg(g21)v), v P Vg, A P Hom(Vg, Sm)K

shows that elements of Vg ^ Hom(Vg, Sm)K are in the domain of D. If ,Dg is
the restriction of D to Vg ^ Hom(Vg, Sm)K , then ,Dg 5 id ^ Dg, with

Dg(A) 5 2 o
m

a51
gaArg*(Xa), A P Hom(Vg, Sm)K

The eigenvalue problem for the Dirac operator

DC 5 lC

reduces to the eigenvalue problem in the subspaces

Hom(Vg, Sm)K

Simple algebraic manipulations give the spectrum of the Dirac operator on
the two-dimensional sphere to be (Cahen and Gutt, 1988)

lj 5 61j 1
1
22, j 5

1
2

,
3
2

, . . .

3. SPINOR STRUCTURES AND DIRAC OPERATOR

In this section, we will discuss the notion of spinor structures and the
connected Dirac operators on quantum spaces. We will limit ourselves to the
classical spinor structures as they were defined in –Durd-evich (1994) within
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the general framework of framed principal bundles (–Durd-evich, 1999), which
incorporates generalization to the case of quantum spaces of both the frame
bundles and their coverings, including spin structures. In this paper, we do
not go beyond the classical spin structures, so that the space of spinors on
the quantum sphere is exactly the same as in the case of a classical two-
dimensional sphere, i.e., C2. However, a more general approach is also possi-
ble, and will be studied systematically in future publications. In the more
general framework (–Durd-evich, 1999), the space of spinors is also treated in
the “quantum” framework, and very exotic features can appear, for example,
the space of spinors can become infinite dimensional, significantly complicat-
ing the whole formalism. We believe that both approaches to spinor structures
and the Dirac operators on quantum spaces make sense and should be exten-
sively studied. Lack of space keeps us from going into the full definition of
the classical spin structure on a quantum space (a general one, not necessarily
corresponding to a classical symmetric space only) and the appropriate Dirac
operator. The complete definition can be found in –Durd-evich (1994). Let us
only recall that an important role in the definition is played by the notion of
a frame structure, which assumes existence of a kind of horizontal vector
field on the principal quantum bundle, the structure group of which happens
to be a classical Spin group. The horizontal vector fields should satisfy axioms
telling us that they are derivations acting in the “algebra of smooth functions”
on the base noncommutative space. The latter space is just defining the
noncommutative “manifold,” so that it is defined in the very beginning. In
particular, in the case of interest for us of the Podleś sphere, which is a
quotient space for the quantum group SmU(2) (at least in the case of the
second deformation parameter c 5 0), just the quantum Hopf bundle with
the U(1) as the structure group is the classical spin structure for this noncom-
mutative sphere (see –Durd-evich, 1996, 1997, for more extensive discussion).
The general form of the Dirac operator on a quantum space equipped with
a frame structure (which means a set of derivatives X1, X2, . . . , Xn satisfying a
number of conditions given by –Durd-evich, 1994), and with the corresponding
classical Dirac matrices g1, g2, . . . , gn , is as follows:

D 5 X1 ^ g1 1 X2 ^ g2 1 . . . 1 Xn ^ gn

and this form is used further in this paper. Since the derivation of spectra of
the Dirac operators on classical symmetric (compact) spaces is reducible to
algebraic calculations with irreducible (unitary) representations of appropriate
Lie groups, following from the Cartan theory of such spaces, it would be
interesting to find an appropriate definition of quantum symmetric spaces,
which then would allow for a similar treatment of the spectral problem for
the Dirac operators. This seems quite hopeless for now. Instead, one can
consider just spaces corresponding to the symmetric ones, e.g., as their
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quantum deformations, or just quotient spaces of some quantum groups,
instead of the classical groups. From Cartan’s theory of symmetric spaces,
it follows that symmetric spaces as a rule could be represented as quotient
spaces of Lie groups, as a result of their homogeneity. Lack of Riemannian
structure on quantum spaces and a lack of points, and, as a result, infinitesimal
neighborhoods of the points, makes it impossible to define a notion corres-
ponding to a homogeneous Riemannian space. There are two alternatives.
We can define a homogeneous space for a quantum group as an orbit in its
action on some space, or, and this is the approach we adopt in this paper
(but we would like to study in the future, in particular in the context of
spectral geometry, also the first option), as a quotient space of a quantum
group by its subgroup, understood as such in the framework of quantum
groups. This naturally introduces a quantum principal bundle structure, with
the numerator quantum group of the quotient as the total space of the bundle
and with the quantum group subgroup in the denominator as the structure
group, as was shown in –Durd-evich (1997).

4. SPECTRUM OF THE DIRAC OPERATOR ON THE PODLEŚ
SPHERE

In this section, we define the Dirac operator on the Podleś sphere and
find its spectrum. The Dirac operator can be written

D 5 X+ ^ g+ 1 X2 ^ g2

g+ 5 F0 0
1 0G, g2 5 F0 1

0 0G
and the operators X+ and X2 are part of the left-covariant differential calculus
defined on the SmU(2) by Woronowicz (1987), which in the appropriate
orthonormal bases of the SmU(2) unitary irreducible representation (unirrep)
spaces, can be written

X+. j, m& 5 m2(m1j)[( j 1 m 1 1)m( j 2 m)m]1/2. j, m 1 1&

X2. j, m& 5 m12m2j[( j 1 m)m( j 2 m 1 1)m]1/2. j, m 2 1&

nm 5
1 2 m2n

1 2 m2

and the unirreps of SmU(2) are classified by j 5 0, 1/2, 1, 3/2, . . . , just as
in the case of the classical SU(2) group. The operators X+, X2 define a frame
structure on the quantum sphere. Therefore, the Dirac operator written above
is aparently a self-adjoint operator and is built in the way the Dirac operators
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should be built on noncommutative spaces according to the general theory
developed in –Durd-evich (1994). The operator acts in the space of “smooth’
spinor fields, which is identifiable with the space @ ^U(1) C2, where the
space C2 in the above tensor product is just the spinor space (2, as it is in
the classical sphere case, and the space @ is the noncommutative *-algebra
of “smooth functions” over the quantum group SmU(2), a direct generalization
of the commutative *-algebra of smooth functions over the classical group
SU(2). The subscript U(1) means we should consider equivariance classes
of elements of the tensor product with respect to the natural action of the
group U(1). Since the space @ is built, as in the classical case, from the
functions given by irreducible representations of the SmU(2), the further
considerations are in the proper subspaces connected with the unirreps of
SmU(2). As in the classical case, only half-integers j contribute to the spectrum.
The latter is equal to

lj 5 6
mi11/2 2 m2(j11/2)

m 2 m21

where m Þ 1, 21. It is easy to check, on the other hand, that in the limit
when m goes to 1, we get back the previous result for the spectrum on the
classical sphere. It is not difficult to check, taking into account that the
degeneracy of the jth eigenvalue is 2j 1 1, in accordance with the dimensions
of the jth representation spaces, that for a large number N of the eigenvalue
lN , it changes asymptotically as m2=N/2, which does not agree for m Þ 1
with the powerlike dependence from Connes’ axiom on the asymptotic depen-
dence on N for the eigenvalues of the Dirac operator on noncommutative
spaces.

5. SUMMARY AND PROSPECTS FOR FURTHER RESEARCH

The paper is a short presentation of the spectral problem for the Dirac
operator on the Podleś sphere, treated as a quotient quantum space. More
extensive presentation of the mathematical subtleties of the operator (e.g.,
proof of its being of trace-class) and of the spectral problem will be presented
elsewhere. The results can be extended in a number of ways. We would like
to study in the future the case of nonclassical spinor structures (–Durd-evich,
1999). Next is the extension to other quotient and also homogeneous quantum
spaces. We would also like to derive physical consequences of these results,
e.g., in the physics of synthetic metals (Makaruk, 1995, 1996) or in supercon-
ductivity (Owczarek, 1995). We would like to understand the reason for the
disagreement of the derived spectrum with Connes’ axiom, and, after studying
more examples, probably suggest a revision to the axiom.
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Podleś, Piotr (1987). Quantum spheres, Letters in Mathematical Physics, 14, 193–202.
Trautman, Andrzej (1992). Spinors and the Dirac operator on hypersurfaces, I. General theory,

Journal of Mathematical Physics, 33, 4011–4019.
Trautman, Andrzej (1995). The Dirac operator on hypersurfaces, Acta Physica Polonica B,

26, 1283–1310.
Woronowicz, Stanisław (1987). Twisted SU(2) group: An example of a noncommutative differ-

ential calculus, Publications of the Research Institute for Mathematical Sciences, 23,
117–181.


